William Hicks

Contact Information

E-Mail: william_hicks@alumni.brown.edu Phone: (404)310-4750

Summary of Qualifications	With graduate degrees in both physics and literary arts, William Hicks is a developer with experience programming for diverse needs and applications. He has worked with physicists to create high-performance multi-threaded simulation software as well as scientific visualization applications, and he has worked with artists to develop creative projects for virtual reality (VR) platforms. His eclectic background and eagerness to learn new technologies give him the flexibility to deal with any programming challenge.
Professional Experience	 Developer: Writing3D Summer 2015 - Present Sole developer for Writing3D, an open source project to provide a gentler point- of-entry for students and artists to create interactive VR experiences
	• Project will provide Python library and associated graphic user interface for creating VR games and artwork
	• Designed to support legacy projects created for Brown University's VR Cave environment as well as new projects for Oculus Rift and Google Cardboard
	• Project includes complete Sphinx-based documentation
	• Source available at https://github.com/wphicks/Writing3D
	Independent Consultant2013 - Present• Provide technical assistance to digital artists for custom software development, with a particular focus on artistic visualization and natural language processing
	 Graduate Fellow: Brandeis University Member of the Hagan research group for computational studies of viral budding Worked with both GPU- and CPU-based high-performance molecular dynamics simulations
	 Independently developed high-performance C++ implementation of algorithm for maintaining surface tension in budding simulations
	• Independently developed OpenGL-based visualization software for simulation re- sults, improving rendering time by a factor of 10
	 Research Fellow: CASPER/Baylor University NSF REU Program Summer 2011 Developed algorithm for finding U(1) charges in weakly-coupled free-fermionic heterotic string models
	• Produced C++ implementation of algorithm for use in large-scale investigations of string models
	• Article describing project details available at http://arxiv.org/abs/1108.4082
	 Research Assistant: Brown University Physics Department Fall 2009 - Spring 2010 Developed a modified algorithm for resolution of singularities in Mellin-Barnes integrals
	\bullet Implemented algorithm as parallelized C++ extension for Python, improving runtime by a factor of 175-450
	Research Assistant: Brown University Physics Department Spring 2009 - Fall 2009

- Helped develop an algorithm for optimal sector decomposition of polynomials occurring in Feynman integrals using Zeillinger's Algorithm and Hironaka's Game
- Implemented algorithm in Python for use in high energy theory computations

Intern: Consulting Aviation Services, Kennesaw, GA Spring 2008

• Ran computer simulations to determine effect of vortex eaglets on various airfoils

Education Brown University

Master of Fine Arts in Literary Arts (2016)

- Participated in Digital Language Arts workshops for developing digital literature
- Served as teaching assistant for LITR1010G, a course for development of VR literary projects
- Volunteered technical assistance for other graduate students creating digital art
- Technical coordinator for Interrupt III, a conference on literature for new media
- Solely responsible for design, instruction, and evaluation of two undergraduate poetry workshops

Brandeis University

Master of Science in Physics (2014)

- 2013-2014 Fellow for Integrative Graduate Education and Research Traineeship (IGERT) in Geometry and Dynamics
- Recipient of 2012-2013 David L. Falkoff Prize for Teaching
- Served as teaching assistant for two advanced introductory undergraduate physics courses, running weekly review sessions and evaluating assignments

Brown University

Bachelor of Science in Literary Arts and Physics (2012)

- Graduated with Honors in Creative Writing and Physics
- Recipient of 2012 Mildred Widgoff Prize for Excellence in Thesis Preparation (Physics)
- 2012 Literary Arts Nominee for Brown Distinguished Thesis Prize
- Recipient of 2010 Karen T. Romer Undergraduate Teaching and Research Award
- Developed Java-based networking and visualization code for *offset*, a collaborative installation showcasing recombinatory poetry
- Presented digital language arts projects at both the 2012 Interrupt II Conference and 2012 NEASA Digital Revolutions Conference

Other Work
ExperienceLead Instructor: Brown University PASS ProgramFall 2008 - Spring 2012• Responsible for designing and teaching a series of single-session classes to help
graduate and undergraduates learn essential technical skills for professional and
academic success

• Also responsible for training instructors and assisting in lesson plan development

Additional Skills • Experienced with best practices for modern version control systems including both Git and Mercurial

- Experienced with multiple Linux distributions
- Experienced with data analysis using R and other statistical software
- Familiar with best practices in Agile software development and test-driven development