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Abstract

In order to explore the string landscape and in hopes of deriving phenomenologically realistic

string models, a construction method for weakly-coupled free-fermionic heterotic string (WCFFHS)

is described in detail, and an algorithm is presented for deriving properties of U(1) groups in

these models. Initial results from the construction of approximately 1.4 million gauge models are

presented and analyzed, yielding information on the role of U(1) charges in determining matter

state uniqueness. The role of U(1) groups (particularly anomalous U(1) groups) in these models

is considered in detail. Finally, some tools for dealing with anomalous U(1) groups in models of

this type are presented, and future avenues of research are discussed.
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I. INTRODUCTION

Over the past several decades, theoreticians have developed a remarkably complete picture

of known particle interactions into the framework known rather prosaically as the Standard

Model. With experimentalists at the Large Hadron Collider narrowing in on the Higgs boson,

the only remaining unobserved component of the Standard Model, it seems likely that all of

the key predictions of the Standard Model will be experimentally verified by the middle of

the decade [1]. Nevertheless, the Standard Model cannot give a complete picture of physics

at this time, and it is equally likely that experimentalists will find signals indicating the

presence of phenomena not explained by the Standard Model during the same time period.

Already, we can point to some examples of phenomena for which the Standard Model

provides no explanation or prediction. Most notably, the Standard Model cannot describe

gravitational interactions, and attempts to derive a complete quantum theory of gravity

have so far failed. While this usually poses no particular difficulties due to the extremely

low strength of gravitational interactions, such a theory would be necessary to describe

systems which are both inherently quantum and extremely massive. Obvious examples of

such systems include black holes and the universe during the earliest stages of the Big Bang.

Another experimentally verified departure from the Standard Model comes from neutrino-

mixing. The observed mixing of lepton flavors for solar neutrinos implies that neutrinos

must have mass, but the Standard Model makes no such prediction [2]. For theoreticians

attempting to derive post-Standard Model physics, this provides a solid check against a

verifiably non-Standard Model phenomenon.

Finally, while the Standard Model provides an accurate description of physical phenom-

ena, it provides little explanation of why the properties of observed particles and interactions

are what they are. For example, while the Standard Model describes the properties of three
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generations of quarks and requires at least three generations for consistency with experi-

mental observations, it does not provide any fundamental justification for the existence of

exactly three generations. More generally, the Standard Model contains over twenty arbi-

trary parameters which must be tuned to fit experimental observations rather than emerging

naturally from an underlying theory. While it is entirely possible that these parameters have

no more fundamental explanation, depending, perhaps, on the arbitrary initial conditions

of the universe, this explanation is somewhat troublesome, and many theorists hope that

a post-Standard Model theory will provide more basic justification of some or all of these

parameters.

A. Basics of string theory

In light of these challenges, theoreticians have explored a number of post-Standard Model

theories, but none have received so much attention or enjoyed so much success as string the-

ory. Stated in its simplest form, the basic postulate of string theory is extremely straight-

forward: namely, string theory suggests that rather than being infinitely small points, the

fundamental particles are actually extended one-dimensional objects known as strings, whose

properties are determined by their oscillatory patterns. While this postulate seems on its

surface to be relatively innocuous, it has profound implications. Most significantly, string

theorists discovered early on that any consistent model of string theory includes a massless

spin-2 particle: a graviton. Thus, while the Standard Model cannot consistently incorporate

gravity, string theory immediately provides a gravitational description consistent with the

rest of its interactions. In addition to its success with gravity, string theory offers some hope

of providing more fundamental explanations for the properties described by the Standard

Model, since the oscillatory modes of the strings determine those properties. By determining

possible modes of oscillation, we can therefore derive those properties.

The process of determining these oscillatory modes proceeds in a fashion similar to that

for any other harmonic oscillator. We begin by defining an action for the system, then apply

the Euler-Lagrange equations to derive the equations of motion. There are several different

types of string theory, and the details of this derivation varies among the different types. In

order to examine some general results of this derivation, however, we begin by considering

the bosonic string, the simplest and earliest-derived form of string theory.

4



To understand these results, we first require some general notation. Being a one-

dimensional object, a string sweeps out a (1 + 1)-dimensional surface in spacetime, which

we refer to as the worldsheet. The worldsheet may be parameterized by two coordinates (τ

and σ), and the motion of the string may be completely described by the function xµ(τ, σ),

where xµ refers to standard spacetime coordinates. For convenience, we will hereafter re-

place τ and σ with the more general coordinates ξ0 and ξ1, which we can redefine to fit

any convenient gauge. For the moment, we take (ξ0, ξ1) = (τ, σ). We can then express the

action for the bosonic string as

S[x, γ] = −T
2

∫
d2ξ
√
−γγab∂axµ∂bxνηµν (1)

where T is the string tension, γab is a metric on the worldsheet (with γ being its deter-

minate), and ηµν is the Minkowski metric [3]. This formulation is known as the Polyakov

action. Analyzing this action, however, we obtain a somewhat disturbing result. The gen-

eral solutions for the equations of motion derived from this action allows for particle states

with negative norm, which can in turn lead to a theory with nonsensical probabilities (to

be further discussed in section V A). In order to eliminate such states, we must apply

the so-called “Virasoro constraints,” which require that the components of the worldsheet

energy-momentum tensor go to zero. Examining these constraints, however, we see that

they only yield physical particle state solutions in exactly 26 spacetime dimensions. In

other words, bosonic string theory requires the existence of 22 additional spatial dimensions

to yield a physically sensible spectrum of particle states. These additional dimensions serve

to cancel the conformal anomaly that would otherwise invalidate the theory.

For many physicists, this surprising result was enough to eliminate string theory as a

viable model, but the existence of these additional dimensions is not necessarily in conflict

with our everyday observations of 4 spacetime dimensions. As first explored in Kaluza-

Klein theory, it is possible to introduce additional spatial dimensions if they are rolled up or

“compactified” into a manifold small enough that we cannot explore it at everyday energy

scales. Thus, any attempt at building a successful string theory model must include some

compactification scheme for these extra dimensions.

5



B. Types of string theory

As it turns out, the simple bosonic string is insufficient to describe the particles that we

see. Most obviously, the bosonic string does not admit spacetime fermions as solutions for

physical states. In order to produce such states, we turn instead to the Ramond-Neveu-

Schwarz (RNS) formulation of the supersymmetric string or “superstring.” In this formula-

tion, we introduce an additional Majorana spinor (ψ) on the worldsheet for every spacetime

dimension, which yields the following action [3]:

S = −T
2

∫
d2ξ
(
∂ax

µ∂axµ − iψ̄µρa∂aψµ
)
. (2)

Performing the same analysis as for the bosonic string, we find that canceling the conformal

anomaly for the RNS superstring requires 10 spacetime dimensions.

Combining this with our analysis of bosonic strings, we can now describe the five types

of string theory [4]:

• Type I: Strings in this type of theory are superstrings and may be described using

the RNS formulation. They differ from Type II strings primarily in that they are

unoriented (i.e. their states do not change if the orientation of the superstring is

reversed [5]). Furthermore, these superstrings can be either open or closed (forming a

loop).

• Type IIA and Type IIB:These are oriented superstrings and may also be described

via the RNS formulation. They differ in a choice of how the space of physical states

is truncated leading either to a chiral (IIB) or non-chiral (IIA) theory. These strings

are all closed.

• Heterotic SO(32) and Heterotic E8 × E8 These theories consist of closed strings

that are hybrids of Type I and bosonic strings. Oscillations moving in one direction

(left-moving or counterclockwise) are treated as oscillations of the bosonic string, while

oscillations moving in the other direction (right-moving or clockwise) are treated as

oscillations of the superstring. The two types differ in their overall gauge group.

While the existence of five different valid string theories at first appeared somewhat

disheartening, work by a number of theorists in the mid-90’s demonstrated that they were
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in fact merely five different realms of a single underlying theory, connected by two types of

duality [3]. T-duality demonstrates that under the transformation

R→ 1

R
, (3)

where R is the compactification radius, Type IIA string models become Type IIB and vice

versa. Furthermore we have the same equivalence between the two types of heterotic models.

S-duality, which establishes equivalences based on the transformation

gs →
1

gs
(4)

where gs is the string coupling constant, also relates Type I models to heterotic SO(32)

models. Similar dualities with respect to R and gs relate M-theory, an 11-dimensional

theory involving higher-dimensional membranes to Type IIA and heterotic E8 × E8, so we

can see that all of these theories are simply realizations of a larger theory under certain

values of R and gs. Nevertheless, distinguishing among these theories allows us to develop

tools which are most useful in their various domains of applicability.

At first sight, the heterotic string is by far the most peculiar of these types of theories,

and it is also the type which we consider most extensively in this paper. The most immediate

peculiarity of such strings is the fact that they seem to simultaneously require 10 and 26

spacetime dimensions, depending on the direction of oscillation. This apparent paradox is

resolved by allowing the 16 additional dimensions of the left-movers to form an even self-dual

lattice. The two possible such lattices correspond to the two possible gauge groups.

C. The string landscape

After recognizing the equivalence of the five string theories, the task of experimentally

testing string theory seems at first to be distinctly manageable: simply construct the spec-

trum of possible oscillator states and compare the properties of these states to observed

particles. Unfortunately, this is not as straightforward as we might hope. Specifically,

although we can construct the particle spectrum from the vacuum determined by the ac-

tion, the criteria for selecting possible compactifications does not lead to a single consistent

vacuum. In fact, research in the early 2000’s established that the number of stable and con-

sistent vacua, though finite, could be on the order of 10500 [6–8]. Although some theorists
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hold out hope for further selection criteria to reduce this so called “string landscape” to

a somewhat more manageable number, there is no reason to believe at this time that any

more precise criteria exist.

This problem is one of the greatest obstacles to unleashing the full predictive power

of string theory, and a number of approaches have been proposed to circumvent it. One

particular approach, adopted primarily by a collaboration known as the String Vacuum

Project, is to construct and catalog a wide range of possible string models. By gathering

statistical information on such models, we can perhaps gain insight into different features

of the entire landscape, or even more excitingly, derive one or more string vacua consistent

with the Standard Model. This requires, however, fast construction algorithms in order to

build enough models to tell us something about the features of the landscape in its entirety.

In light of this challenge, as well as this opportunity, we consider one particular type of

string model, the weakly-coupled free-fermionic heterotic string (WCFFHS), and examine

methods of constructing such models.

II. CONSTRUCTING WCFFHS STRING MODELS

A. Weakly-coupled free-fermionic heterotic strings

As described in section I B, heterotic strings are a hybrid between Type I and bosonic

strings. As such, their left-movers move in 26 spacetime dimensions, while the right-movers

move in 10 dimensions. In order to formally describe these dimensions in WCFFHS models,

the degrees of freedom on each side will be fermionized. In 10 large spacetime dimensions,

this gives us 32 real fermions on the left (two for each of the 16 extra bosonic degrees

of freedom) and 8 real fermions for the 8 directions transverse to the string[3]. For each

compactified dimension, we introduce one additional bosonic degree of freedom on each

side. Fermionizing the bosonic degrees of freedom (yielding two fermions for each boson),

we see that we have

Right: 2(14−D) (5)

Left: 2(26−D) (6)

fermionic degrees of freedom in a model with D large spacetime dimensions.
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In general, these worldsheet fermions could interact via so-called Thirring interactions,

leading to complications when constructing a given model. In particular, if we examine the

action for a worldsheet boson Xµ, we will see terms of the form [9]

∂aX
µ∂aXµ. (7)

Expressed as fermions (ψ), this gives us

iψ∗µ∂aψµ + iψ̄∗µ∂aψ̄µ − hψ∗ψψ̄∗ψ̄, (8)

where h is the Thirring coupling, which depends on the radius of compactifiction R for the

model as follows [9]:

h =
R

2
− 1

2R
. (9)

Thus, we see that at the self-dual radius
(
R = 1

R

)
, h vanishes and we have no Thirring

interactions. Such models are called free-fermionic models for obvious reasons, and we will

confine our analysis to models of this type. We will also restrict our attention to models

with weak string coupling (gs << 1).

While the general construction of string spectra is a complex problem, in 1986 two

groups independently developed a completely general and systematic construction method

for fermionic heterotic strings compactified on tori [10, 11]. In [10], Kawai, Lewellen, and

Tye describe two distinct but entirely equivalent systems of constructing heterotic string

models, one of which is based on the physical oscillator states of the string and the other

of which describes those states in terms of their fermionic charges. While the first method

gives a more intuitive understanding of the origin of these states, the second is far more

convenient for most tasks in constructing the spectrum and identifiying its properties. We

will therefore begin by describing the oscillator construction as laid out in [10] and then

proceed to the charge lattice construction for details of the construction process.

B. The oscillator construction[12]

The oscillator construction begins by describing the geometry of the compactification

manifold via the boundary conditions on individual world-sheet fermions. A particular

boundary condition can be specified by a number v, which specifies the phase a given
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fermion ψl picks up when transported around a non-contractible loop in spacetime:

ψl → e−2πivψl. (10)

In general, real fermions in these models can be paired to form complex fermions, but as we

shall see, such pairings are not always possible. For real fermions, v can only take on values

0 and 1
2
, but complex fermions may take on any rational value in the range [0, 1).

In order to completely specify the geometry of the worldsheet, we choose a linearly

independent set of basis vectors {Wi} These basis vectors span a sublattice of the space of

possible W-vectors which uniquely specifies the worldsheet geometry for a specific model.

In particular, they will be used to generate a set of vectors {αW} whose components give

the boundary conditions for each of the worldsheet fermions. Explicitly, this set of vectors,

which specifies the sectors in our model, is generated by

αW =
∑
i

αiWi αi ∈ [0,mi) ∩ Z (11)

where mi is the smallest integer such that all elements of miWi are integers and the overline

notation indicates that we have taken each of the elements mod 1. In 10 large spacetime

dimensions, we will have (8 + 32)-dimensional vectors to describe the boundary conditions

on the 8 right-moving and 32 left-moving real fermions. In a complex basis, we could describe

the geometry with half as many components on each side.

1. Constraints on the partition function

While these vectors {Wi} can describe the boundary conditions for an arbitrary model,

we are not entirely free in our choice of such vectors. Some worldsheet configurations are

not permitted, since we must ensure that a given geometry provides a consistent partition

function for the entire model. In particular, we must ensure the following properties for the

partition function:

• Reparameterization invariance: The partition function should be invariant under

any valid reparameterization of the worldsheet coordinates ξ0 and ξ1

• Worldsheet supersymmetry: This, in combination with reparameterization invari-

ance ensures positivity, and in the light-cone gauge, also gives us spacetime Lorentz

invariance.
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• Superconformal invariance and absence of local 2D gravitational anomalies:

These requirements are (quite naturally) necessary for any physically sensible theory.

• Modular invariance: The partition function should be invariant under modular

transformations of the worldsheet. In general, such a transformation will change the

boundary conditions for any given fermion, but since modular transformations give

valid parameterizations of a single torus, they should not change the overall contribu-

tion of a world-sheet fermion to the partition function.

• Valid projection of physical states: In general, constructing all possible oscillator

states on a string vacuum will produce extra states that, if included in the model,

would prevent the construction of a valid root structure for the model and lead to

contributions to the partition function that are inconsistent with proper spin-statistics.

Because of this, we must have a projection of states onto some physical space that

ensures fermionic states contribute negatively to the partition function while bosons

contribute positively.

Of these conditions, we will be most concerned with the last two, since modular invariance

creates a strict set of rules for sensible boundary basis vectors, and the final condition

requires that we also provide a valid Gliozzi-Scherk-Olive (GSO) projection matrix (with

elements kij for our model) [13]. This matrix will be used to remove some of the states from

the model and thereby ensure a valid gauge structure using the mechanism to be indicated

in Equation 18. Worldsheet supersymmetry is ensured by the fermionization procedure for

the degrees of freedom in the model, and while the other conditions determine the exact

form of the overall partition function, they do not put any manifest constraints on the form

of our basis vectors or GSO projection.

2. Modular invariance

Acknowledging these conditions, our task is now to construct a set of basis vectors as

well as a GSO coefficient matrix consistent with these requirements. Unfortunately, these

conditions are not as restrictive as we might hope, and they allow for the creation of an

enormous number of possible string spectra. Nevertheless, in order to derive the explicit
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restrictions on the basis vectors, we consider the contribution of the boundary conditions of

each fermion to the overall partition function under modular transformations.

Modular transformations of the worldsheet will be of the form

τ → aτ + b

cτ + d
{a, b, c, d} ∈ Z ad− bc = 1 (12)

and can be generated by the following elements:

τ → −1

τ
(13)

τ → τ + 1. (14)

We can therefore vastly simplify our task of finding restrictions on {Wi} and kij by simply

examining how the partition function transforms under these generators and demanding that

{Wi} and kij collectively be chosen to ensure that the partition function remains invariant.

These conditions are explicitly derived in [10], but here we will simply quote the results:

kij + kji = Wi ·Wj (mod 1) (15)

mjkij = 0 (mod 1) (16)

kii + ki0 + si −
1

2
Wi ·Wi = 0 (mod 1) (17)

where the dot product carries a negative sign for the contribution from right-moving ele-

ments as well as a factor of 1
2

for real fermions, and si is a parameter giving information

about spacetime statistics for the model. si takes on value 1
2

if both the first and sec-

ond right-moving components (which correspond to non-compact directions and which will

hereafter be referred to as the spacetime fermionic components) of a given basis vector

have antiperiodic boundary conditions and value 0 if these components both have periodic

boundary conditions.

3. Deriving the low-energy spectrum

Once we have found a valid set of basis vectors and GSO coefficients, we have everything

we need to specify a particular string model, and we can then derive the physical spectrum.

We will express possible oscillator states as vectors NαW, where each element gives the

fermionic occupation numbers for each of the world-sheet fermions of the physical state.

Note that these states are labeled by their sectors (αW), since they indicate excitations on
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the distinct vacuum states associated with each sector. In addition, we can specify D − 2

non-compact bosonic excitations (referred to hereafter as spacetime bosonic excitations) on

each side for the physical states where D is the number of large spacetime dimensions. The

spectrum-generating equation is given by the GSO-projection condition:

Wi ·NαW =
∑
j

kijαj + si + k0i −Wi · αW (18)

where the dot product carries the same convention as in Equation 15 and Equation 17. With

this expression, we can now generate all states which are in the state space projected onto

via our chosen GSO-projection. By choosing modular invariant {Wi} and kij and using

a proper fermionization procedure, we have also ensured that most of the constraints on

our partition function have been satisfied. However, if we wish to make contact with the

Standard Model, we must consider what other conditions are necessary for a given physical

state to be included in the low-energy effective field theory (LEEFT).

In particular, we must consider what we know about the mass of the generated physical

states. Since these states are built at the string energy scale, any massive states will be

too massive to observe at everyday energies. Furthermore, we shall see that the mass for

the right-moving and left-moving parts of the string are determined separately, and these

masses must be consistent for a state to be included in the model at all. This is known as

the level-matching condition.

4. Mass of the physical states

In order to examine the mass of the states in our model, we begin by analyzing the energy

of the vacuum state associated with each sector. For a given boundary condition v on a

complex worldsheet fermion, its energy contribution to the associated vacuum-state is given

by

Ev =
1

2

(
v2 − v +

1

6

)
. (19)

Real fermion boundary conditions will contribute half this value. The overall energy of the

vacuum state for the left (right)-movers will be given by

E
left(right)

αW
=

∑
l:left(right)

{
E
αW

l

}
− D − 2

24
(20)
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After determining the energy of the vacuum state, we then examine the contribution of

each excitation of the physical state to its overall mass. In order to do so, it is convenient

to break the fermionic occupation number down in order to account for its normal mode

excitations separately. Splitting apart the fermionic occupation number, we can examine

the fermion numbers for its normal mode excitations (n and n) separately, where

Nl
αW

=
∑
q

nlq − nlq (21)

and q ranges over integer quanta of excitation. The mass m squared for the left(right)-

moving part of a given state is then given by the following:

m2
(

left(right), n, n, M̃
)

=
∑

l:left(right)

{
E
αW

l

+
∞∑
q=1

[(
q − αWl

)
nlq +

(
q + αW

l − 1
)
nlq

]}

− D − 2

24
+

D−2∑
l=1

∞∑
q=1

qM̃ i
q

(22)

where M̃ refers to the spacetime bosonic excitations. Using Equation 22, we can now check

the level-matching condition to ensure that a state is physical, as well as the masslessness

condition to determine whether or not a given physical state will be present in the LEEFT.

This is the last tool necessary to determine the particle spectrum for any model of this type.

In addition to determining the mass of a given state, we can determine its fermionic

charge vector via

Q = αW −W0 + NαW , (23)

a formula which will provide an important correspondence between the oscillator and charge

lattice constructions.

5. A simple example

We now consider the simplest possible example of a model for 10 large dimensions in this

construction and derive its low-energy physical spectrum. Consider the basis vector

W0 =

((
1

2

)8

||
(

1

2

)32
)

(24)
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where the || notation separates the right-moving and left-moving part respectively. It turns

out that modular invariance considerations guarantee that this particular basis vector appear

in every {Wi} if we are to obtain a model with a non-zero partition function, so let us

consider the model generated by W0 as its only basis vector.

Our first task is to determine valid values for our kij matrix, which in this case consists

of the single element k00. Applying the constraints in Equations 15-17, we obtain

2k00 = 3 (mod 1) (25)

2k00 = 0 (mod 1) (26)

2k00 +
1

2
− 3

2
= 0 (mod 1). (27)

This reduces to a single constraint (2k00 = 0 (mod 1)), which gives us k00 = 0, 1
2
. While

both of these choices for our kij matrix yield the same model for this case, it is possible to

obtain different models simply by varying the choice of GSO coefficients, and it is generally

necessary to vary both {Wi} and kij to explore all possible models. For convenience, we

will take k00 = 0.

Next, we determine the sectors (which in this case is rather trivially W0 itself and 0) and

calculate the vacuum state energy for each sector by applying Equation 20 to the left- and

right-moving parts separately. Recalling that we are currently working with real fermions

(though we could just as easily deal with complex fermions by pairing the given fermions on

each side), this gives us a left-moving vacuum state energy of −1 and a right-moving vacuum

state energy of −1
2

for the W0-sector, which we denote by
[
−1

2
,−1

]
. For the 0-sector, we

have vacuum state energy [0, 1]. Since adding excitations on the vacuum state can only

increase the mass, we see that the 0-sector cannot produce any massless states.

Having obtained the vacuum state energies, we consider the lowest-mass physical states

that can be produced in this model. Applying Equation 18 to the W0-sector, we obtain the

following constraint for the physical states:

W0 ·NW0 =
1

2
(mod 1). (28)

Recognizing that we can ignore sign-contributions since −1
2

= 1
2

(mod 1), this in turn gives

us (in a real basis)[14]

1

2

40∑
l=1

∞∑
q=1

nql =
1

2
(mod 1). (29)
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From this and the level-matching condition, we see that our lowest-mass physical state

would have a single left-moving fermionic excitation, yielding 32 tachyons with m2 = −1
2
.

Our next-lowest set of states are massless and have one fermionic excitation on the right. On

the left, we could have either two fermionic excitations or one spacetime bosonic excitations,

giving us gauge bosons and members of the gravity supermultiplet respectively. While we

will address the issue of identifying gauge groups more explicitly in our discussion of the

charge lattice construction, it is easy to see from the forms of the state vectors that the

gauge bosons in this model form a representation of SO(32). Any further states in this

model will clearly be massive, so we now have our entire low-energy spectrum. While the

presence of tachyons in this model is somewhat troubling, we can easily project out those

states through the addition of a single new basis vector

W1 =

(
(0)8 ||

(
1

2

)32
)

(30)

which will remove any states with a single left-moving fermionic excitation via Equation 18

and generate 496 massless fermions from the W1 + W0 sector.

C. Charge lattice construction

Although the oscillator construction provides a fairly direct picture of the origin of the

physical states in a string model, it proves inconvenient for deriving certain properties of

the constructed model as well as numerical construction of a large number of string models.

For such tasks, we will instead turn to the charge lattice construction, an entirely equivalent

method in which we construct the fermionic charge vectors of the states directly rather than

constructing their fermion occupation number vectors. While the results from section II B

were almost completely general for fermionic heterotic string models, we will strictly confine

our attention in this section to four-dimensional weakly-coupled free-fermionic heterotic

models. Since our ultimate goal is to develop tools that can be used for exploration of

the string landscape through rapid construction of models (and also to avoid any possible

confusion with the oscillator construction), we will shift from the notation employed in

section II B to that of [15], which presents a fast, robust, and highly extensible computational

framework for generating WCFFHS models. We can then use this construction method to

more readily explore some of the details of these models that would be more difficult to
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extract using the oscillator construction.

1. The basis vectors

As before, our construction method begins by specifying a set of basis vectors, which

specify information about the geometry of the worldsheet. In this case, however, we will

use substantially different conventions for how this information is specified, and we will

refer to these basis vectors as the set {~αBi } to emphasize this distinction. We will begin

by offering some additional notation for the components of the basic vectors before offering

some constraints on allowed basis vector sets. We will then proceed to clarify their physical

meaning after using them to construct the sectors in our model, noting here only that they

serve the same function as the set {Wi} and that their components will determine the phases

of worldsheet fermions.

It is convenient to provide some additional notation for the worldsheet fermions described

in our model, as this will provide us with a set of labels for the various components of each

~αBi [16]. The right-moving part of a given basis vector ~αB will be denoted by the following

components:

(
(ψ1, ψ1

c ), (x, y, w)1, (x, y, w)2, (x, y, w)3, (x, y, w)4, (x, y, w)5, (x, y, w)6
)

(31)

where ψ1 and ψ1
c refer to non-compact fermionic modes (again referred to as spacetime

fermionic modes) whose charges will determine whether a given state is a spacetime fermion,

boson, or scalar. The left-moving part is split into three parts, the observable, hidden, and

compactified sectors, which are labeled as

Observable:
(
ψ

1
, ψ

1

c , ψ
2
, ψ

2

c , ψ
3
, ψ

3

c , ψ
4
, ψ

4

c , ψ
5
, ψ

5

c , η
1, η1c , η

2, η2c , η
3, η3c

)
(32)

Hidden:
(
φ
1
, φ

1

c , φ
2
, φ

2

c , φ
3
, φ

3

c , φ
4
, φ

4

c , φ
5
, φ

5

c , φ
6
, φ

6

c , φ
7
, φ

7

c , φ
8
, φ

8

c

)
(33)

Compactified: (y1, y2, y3, y4, y5, y6, w1, w2, w3, w4, w5, w6) (34)

Using this notation, we now turn to the problem of choosing valid basis vectors.

Each ~αBi has rational components in the range (−1, 1], and we associate with each such

basis vector an integer Ni known as the order of that basis vector, which is given by the

least common denominator of the elements of ~αBi . This will conveniently allow us to encode

the numerator and denominator of elements in the basis vectors separately as integers for
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the purposes of programming. As with the vectors {Wi}, we are not entirely free in how the

choice of basis vectors, and we present the following rules to ensure a consistent, worldsheet-

supersymmetric model:

• The vector 11 consisting of all 1’s appears in every model

• The set {~αBi } should be linearly independent. This ensures that the ~0-sector cannot be

produced via a linear combination of basis vectors (with nonzero linear coefficients).

• The number of periodic components in each triplet (x, y, w) among the right-moving

components must be odd. This ensures that the fermion that this triplet represents

has proper spin.

• Every fermion must be paired with exactly one other, each of whose components are

equal to one another in all basis vectors (though not necessarily equal to the corre-

sponding components in any other basis vector). This condition essentially ensures

that fermionizing a bosonic degree of freedom still has a sensible interpretation in

terms of worldsheet bosons.

• Any fermion labeled with a subscript c forms a complex pair with the non-subscripted

fermion of the same symbol (e.g. ψ
1

c is paired with ψ
1
, etc). This means that the

compactified fermions on the left are free to form pairs with right-moving fermions, a

case that will become important in analyzing the gauge group of the generated model.

• The xi on the right are paired such that x2n+1 is paired with x2n+2 for all n ∈ Z∩ [0, 2]

• The order of the left-moving fermions may be freely changed in the basis vectors, so

long as the same pairings are maintained across all basis vectors (i.e. If y1 and w1 are

exchanged in one basis vector, they must be exchanged in all basis vectors to ensure

that the pairing of fermions is not disturbed). Such re-orderings will not affect the

physical model produced.

• The right-moving sides of the basis vectors are of order 2.

In addition to these rules, the following conditions will ensure that a chosen set of basis
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vectors can produce a modular invariant model:

Nij~α
B
i · ~αBj = 0 (mod 8) (35)

Nii~α
B
i · ~αBi = 0 (mod 16) (For even-ordered basis vectors only) (36)

where Nij refers to the least common multiple of Ni and Nj. Furthermore, all ~αB are ex-

pressed in a real basis and the dot product introduces a negative sign for the contribution

from left-moving components. In addition we must have an even number of periodic com-

ponents in any three basis vectors to ensure that it is possible to pair all real fermions

properly.

Once we have built a valid set of basis vectors, we can construct the sectors of the model

by taking all possible linear combinations of the form

~α =
m∑
i=1

ai~α
B
i ai ∈ Z ∩ [0, Ni − 1] (37)

where the sum runs over the number of basis vectors. We will also convert the {~α} such that

their values are in the range (-1, 1] for convenience in establishing later rules regarding these

vectors. We can now give the explicit physical meaning of the components of the vectors

{~α}; namely the component ~αl gives the phase that the corresponding worldsheet fermion

(f) picks up when transported around non-contractible loops in spacetime:

f → e−iπ~α
l

f. (38)

2. GSO coefficient matrix

We now have all the information we need to generate a valid set of basis vectors {~αB},

but we must also determine a valid matrix of coefficients (kij) which will be used to establish

the GSO projection for the constructed model. There are three major rules for choosing

these coefficients, which still grant considerable freedom in our choice of GSO projection.

The first of these simply establishes that each column of the kij-matrix is of the same order

as the corresponding basis vector:

Njkij = 0 (mod 2). (39)
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The other two constraints ensure that the GSO projection leads to a modular-invariant

model:

1

2
~αBi · ~αBj = kij + kji (mod 2) (40)

1

4
~αBi · ~αBi − si = kii + ki1 (mod 2) (41)

where si = 0 if ψ1 = ψ1
c = 0 and si = 1 if ψ1 = ψ1

c = 1. In practice, this gives us a choice in

m2−m
2

+ 1 components of kij for a model with m basis vectors.

3. Generating states

After having constructed a set of sectors {~α} from the basis vectors as well as a valid GSO

coefficient matrix, we must generate the set of possible fermionic charge vectors { ~Q}. This

is achieved by applying fermion raising or lowering operators to the worldsheet fermions in

the vacuum states indicated by the sectors. Explicitly, potential charge vectors are given by

~Q =
~α

2
+ ~F (42)

where the components of ~F take on values −1, 0, or 1 depending on whether we are applying

a lowering operator to a particular worldsheet fermion, leaving it unchanged, or applying

a raising operator respectively [17] While this construction method allows us to construct

the charge vectors for all massless physical states in a given model, this may not be terribly

efficient if we are interested only in a few general features of the model. In particular,

one reasonable goal for a string model would be to produce a supersymmetric spectrum

with three chiral generations of matter and a phenomenologically realistic gauge group (e.g.

SU(5) or S0(10)×U(1), both of which have been suggested by Grand Unified Theory (GUT)

models). In order to evaluate a string model based on these criteria, we would have no need

to produce the entire spectrum. For example, the scalar particles would not be relevant to

such analysis, and we never need to explicitly construct the graviton, which appears in all

string models.

In light of this, we can apply a few general rules for what types of states can arise from a

given sector if particular fermionic excitations are applied in order to build only those parti-

cles necessary to determine the model’s phenomenological viability. These rules, developed

by the Early Universe, Cosmology, and Strings (EUCOS) group at Baylor University, are
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presented at length in [15]. Here, we simply quote the results in order to use them in our

later analysis of WCFFHS model gauge groups. We can predict the states coming from a

particular sector via the following rules:

• A sector characterized by periodic right-moving spacetime boundary conditions will

produce spacetime fermions

• Sectors of right-moving length-squared 0 will produce all spacetime bosons in the

model

• Supersymmetric partners will arise from sectors with left-moving length-squared 0 and

right-moving length-squared 8

Next, we turn to those rules which inform our choice of components for ~F in Equation 42.

Importantly, the same operator must be applied to both fermions in a complex pair, but

this is not necessarily the case with left-right pairings. Furthermore, as in the oscillator

construction, we only wish to produce massless states, and here, the mass (on the right and

left respectively) is given by [18]

m2
R =

1

4
~Q2
R −

1

2
(43)

m2
L =

1

4
~Q2
L − 1 (44)

Thus, this construction method need only produce charge vectors with length-squared 2 on

the right and 4 on the left. Rules for what types of particles will be produced by various ~F

(also developed by the EUCOS group) may now be employed to develop the most efficient

construction process. In particular, we have

• Raising an internal fermion mode on a bosonic sector will produce a spacetime scalar

• Exciting a spacetime bosonic mode will produce states in the gravity supermultiplet

or bosons resulting from the gravity supermultiplet in 10 dimensions due to compact-

ification (See section III A)

• For left-moving fermions paired with right-moving fermions, applying lowering opera-

tors to each will produce physically identical states
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Given these rules, the construction process can be streamlined to produce only those states

we need to analyze a particular model. To this end, the construction process will avoid

producing scalars, ignore the spacetime bosonic degrees of freedom [19], and only lower

left-moving modes in left-right pairs.

With these rules, all relevant states may now be generated and included in the model or

projected out via the GSO projection. In this construction, the GSO projection equation

becomes
1

2
~αBj · ~Q~α =

∑
i

kjiai + sj (mod 2) (45)

where ~Q~α is a charge vector built on a particular sector (α), ai is as in Equation 37 for

the given α, sj is as in Equation 41 for the given ~αBj . The dot product is defined to have a

negative contribution from the left-moving part, and any contributions from left-right paired

fermions contribute with an additional factor of 1
2
. After a set of charge vectors has been

selected by this projection, we have the low-energy spectrum and can begin analyzing the

phenomenological features of a particular model.

While the charge lattice construction may seem more convoluted due to the number of

rules used in the construction process, these rules mainly result from a desire for optimal

efficiency– a necessity if we are to gain statistical information on any reasonable portion of

the string landscape. Working with the charge vectors directly will also significantly simplify

the analysis of the gauge content (particularly the U(1) content) of these models.

III. ANALYZING WCFFHS MODELS

A. Identifying Gauge Groups

The first step in examining the phenomenological properties of a given model is to identify

its gauge groups. Models without a realistic gauge group can be discarded, and the remaining

models can be more closely scrutinized to determine whether or not they contain realistic

spectra overall.

The process of identifying the gauge groups of a model begins by identifying the gauge

bosons among constructed states. This is relatively straightforward since these states must

have a spacetime vector index, and they should arise from bosonic sectors as defined in

section II C 3. A state can gain a spacetime vector index by having right-moving spacetime
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fermionic charges equal to 1 (ψ1 = ψ1
c = 1) or through a spacetime bosonic excitation on

the left. In the first case, we would have charge vectors of the form(
1, 1,~018||~β

)
(46)

where ~β is some vector satisfying the masslessness condition ~β2 = 4. We will refer to this

group of bosons as the left-moving gauge bosons. Notice that on the right-moving side,

the spacetime fermionic coordinates take care of the masslessness condition for this group

immediately, yielding 0’s for the remaining coordinates. Similarly in the second case, the

bosonic excitation would take care of the left-moving masslessness condition (as shown in

Equation 22 for the oscillator construction), and these charge vectors would be of the form(
0, 0, ~γ||~044

)
(47)

where ~γ satisfies the masslessness condition ~γ2 = 2. Note that the spacetime fermionic

coordinates must both take on value 0, since the bosonic excitation already provides a

spacetime vector index. We will refer to this second group of bosons as the right-moving

gauge bosons. While it turns out that the right-moving gauge bosons are not terribly relevant

to this analysis, understanding why this is so requires a more thorough understanding of

how the gauge groups are identified.

As is the case in gauge theory in general, the identified gauge bosons form an adjoint

representation of the gauge groups. In order to further analyze the root structure, the

appropriate scalar product on the root space (i.e. an appropriately defined inner product

among these charge vectors) must be defined. An immediate possibility is the product

defined for Equation 45. This, however, is not correct, as a result of the left-right pairing

in these models. As described in [20], these left-right pairs (also known as necessarily real

fermions) correspond to a truncation of the roots in the representation, since they project

Cartan generators in the representation established by the gauge states out of the spectrum

[21]. This is equivalent to the fact that the components of the charge vectors associated

with the complex fermions are the eigenvalues of the gauge group representation. Thus, the

left-right pairs do not contribute to the inner product.

To further narrow down the choice of inner product, we next examine the precise form

of the left-moving and right-moving gauge groups and note that regardless of how any

individual coordinate contributes to the inner product, these charge vectors are orthogonal,
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and thus the left-moving and right-moving groups cannot combine to form representations

of any higher rank gauge group. In many cases the right-moving gauge states will have little

or no impact on the LEEFT, but the left-moving gauge states would certainly give rise to

a gauge group that would be observed experimentally [22]. Because of this, we turn our

attention strictly to the left-moving gauge group, and the inner product is defined to run

only over the left-moving degrees of freedom:

~Qi · ~Qj =
∑
k:Left

~Qk
i
~Qk
j (48)

where k runs over the complex (non-left-right paired) fermions.

With the inner product defined, all necessary tools are now available to identify the

gauge groups. Having restricted our attention to the left-moving group, we focus only on

the left-moving charge vectors, and the positive roots (defined by convention to be those

left-moving charge vectors whose first non-zero element is positive) are identified. This set

is then split into mutually orthogonal sets; that is, sets whose elements have inner product

0 with the elements of every other set. This breaks the set up according to the separate

groups whose tensor product gives the overall gauge group. Each set can then be further

analyzed to identify the simple roots of the representation by removing those elements which

can be written as a linear combination of other elements. Once the simple roots have been

identified, it is a simple matter to construct the Cartan matrix for each set, which is defined

to have elements

Cij = 2
~Qi · ~Qj

~Qi · ~Qi

. (49)

Since the Cartan matrix uniquely identifies a group, we can compare the constructed matrix

to known Cartan matrices and determine the gauge group for a particular model. In reality,

it is often unnecessary to produce the entire Cartan matrix, since the gauge group can be

determined by other properties, such as the number of positive roots and the length of some

of those roots. In fact, in the software used to obtain the results presented in section IV B,

a more complex but also more efficient set of rules is employed to identify the gauge groups.

These rules are presented in detail in [15].

With this analysis, significant progress has been made toward understanding the gauge

content of a constructed model, but a significant hole remains to be considered. It has

been established that the complex left-moving elements are eigenvalues of the group rep-

resentation, and since the gauge states are in the adjoint representation, each gauge state
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corresponds to a generator of the group. The obvious question, then, is how to deal with

the Cartan generators, for they will be associated only with zero-length roots. For the non-

Abelian groups that can arise in these models, this does not pose an issue since the positive

roots are sufficient to identify them, but the same cannot be said of the U(1) groups. A

given U(1) group has only a single generator, which is also a Cartan generator (since the

entire group is Abelian). As such, U(1) groups, though they may appear in a model, will

not have been detected by our present analysis, and we must turn to other means to identify

them. The first goal will simply be to determine how many U(1) groups are present in a

model, and this will be achieved by determining the overall rank of the gauge group and

comparing it to the rank of the identified non-Abelian groups.

B. Rank of the gauge group

In order to determine the rank of the gauge group for a particular model, we begin by

determining the maximum possible rank and then examining how that rank is reduced. For

a 10-dimensional model, the maximum rank of the gauge group will be 16, corresponding to

the 16 dimensions of the even self-dual lattice for the bosonic string. This is in accordance

with the rank of the two consistent overall gauge groups for 10-dimensional heterotic theories:

SO(32) and E8 × E8. Next, the effect of compactification on the rank must be considered.

From standard Kaluza-Klein reduction of dimensions, it can be shown that each addi-

tional compactification of a large spacetime dimension contributes an additional U(1) group

from the 10-dimensional metric as well as a U(1) from the antisymmetric tensor, each of

which could potentially be promoted to some other groups in combination with the other

gauge states in the model [23]. The U(1)’s arising from the antisymmetric tensor, however,

correspond to the right-moving gauge states discussed in section III A, so the maximum rank

of the left-moving gauge group with d compactified dimensions is16 + d.

Finally, we consider potential sources of rank reduction or “rank-cutting” in a WCFFHS

model. Since the rank of a group is exactly equal to the number of Cartan generators in

that group, rank-cutting will occur when the gauge state or states associated with one or

more of those generators is projected out of the spectrum. As discussed in section III A, this

will occur in the case of necessarily real fermions, and, indeed, there is no other mechanism
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in this construction to achieve this effect[24]. Thus, the overall rank of the gauge group is

16 + d−NLR (50)

where NLR is the number of left-right pairs in the given model.

Having established the rank of the overall gauge group, the number of U(1)’s can now be

determined. Since each U(1) increases the rank by 1, the number of U(1) groups
(
NU(1)

)
,

is given by

NU(1) = 16 + d−NLR −RNA (51)

where RNA is the rank of the non-Abelian gauge groups. While this does not yield a complete

picture of the gauge interactions, the full gauge group has at least been determined, and we

can proceed to examine the remaining properties of the spectrum.

C. FF Framework

While the calculations involved in the charge lattice construction (and the analysis of its

spectrum) described thus far are not excessively challenging, the sheer number of possible

states within a given model as well as the overwhelming number of possible models in

the string landscape necessitates an automated method for producing and analyzing these

models. In particular, gaining any meaningful statistical information on a portion of the

landscape will require extremely fast implementations of efficient construction and analysis

algorithms. To this end, the EUCOS group at Baylor University has developed a fast, highly

extensible C++ framework known as “FF Framework” (Free Fermionic Framework) which

implements the charge lattice method for constructing and analyzing WCFFHS models, and

the results presented in section IV B will make considerable use of this tool[25].

A number of initial studies have been carried out using this framework, and many of

the results have been summarized in [15]. Prior to the research presented herein, however,

FF Framework did not include a method for deriving anything more about the Abelian

content of the constructed models than the number of U(1) groups. Given that these groups

can have a significant impact on the phenomenology of the models, we now address the issue

of the U(1) gauge content directly.
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IV. U(1) GAUGE GROUPS IN WCFFHS MODELS

In the Standard Model, the U(1) gauge symmetry, in combination with the SU(2) group

underlies our understanding of electroweak interactions, and it is associated with the con-

served charge known as weak hypercharge. Thus, an understanding of the U(1) groups in

a string model is necessary to arrive at a complete picture of the gauge interactions in that

model. In particular, we must derive how each of the matter states in a given model are

charged under the U(1) gauge states in order to understand their interactions.

For a non-Abelian group, this process is straightforward; we simply take the inner product

of the left-moving parts of the matter state and the gauge states (as defined in Equation 48).

As established in section III A, however, the outlined construction process does not generate

the U(1) gauge states, so another algorithm must be employed to find the U(1) charges. In

particular, although the U(1) gauge states cannot be directly constructed, it is possible to

construct a U(1) gauge generator with no net charge (as expected for the U(1) gauge state),

but the sum of whose charges squared satisfies the masslessness condition. That is to say,

we are looking for a state of the form (
1, 1,~0||~β

)
(52)

where ~β2 = 4 to satisfy the masslessness condition and the entire charge vector has zero

net charge. The dot product of the matter states with these gauge generators will yield the

desired U(1) charges (again using the product defined in Equation 48).

A. Constructing U(1) gauge generators[26]

In order to determine the U(1) generators, we first consider what constraints we have

on the form of these vectors. In particular, being gauge generators, the right-moving parts

are determined just like those of the other gauge states in the model; in particular, their

spacetime-fermionic components will both take on value 1 while the rest of the components

take on value 0. Furthermore, in order to be the gauge generators for a separate U(1)

group, the left-moving part of these states must be orthogonal to the simple roots of the

other gauge states in the model as well as to the gauge generators of other U(1) groups.

This is the only condition that these generator states need satisfy however, for they are

unique only up to rotations in the space orthogonal to the simple roots of the non-Abelian
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groups[27]. That is to say, the constraints on the form of a U(1) gauge generator that

ensures an anomaly-free model (ignoring the possibility of a single anomalous U(1) group

to be addressed in section V) is also satisfied by any linear combination of the generators,

so any set of generators that satisfy the orthogonality condition will provide a consistent

theory (given, of course, that the construction method itself produces a consistent model,

which it always does)[28].

Given this fact, the problem of constructing the U(1) gauge generators reduces to a

straightforward linear algebra problem. Specifically, we must find a set of mutually orthog-

onal vectors (the left-moving part of the U(1) gauge generators) which are also orthogonal

to a given set of linearly independent vectors (the simple roots of the non-Abelian gauge

groups)[29]. This mutually orthogonal set of vectors will be denoted VU(1) and the given

set of linearly independent vectors will be denoted VSR. The cardinality of VU(1) is given

in Equation 51, and the cardinality of VSR will be denoted NSR. For convenience and

computational efficiency, all complex fermions will be denoted by a single element in these

vectors.

The first priority for this algorithm is to generate so-called external gauge states, which

have all left-moving elements 0 except for a single element, to which we can assign the value

1. These states will be constructed whenever there is a particular coordinate which takes

on value 0 for every vector in VSR. The number of elements of VU(1) constructed up to any

given point in the algorithm will be denoted nU(1).

Once the external gauge states have been constructed, the remaining NU(1)−nU(1) states

orthogonal to VSR and the U(1) gauge generators must be constructed. Consider the next

vector ~v to be constructed in VU(1). If the union of VSR and the elements of VU(1) constructed

thus far is denoted U, NSR +nU(1) constraint equations can be constructed for the elements

of ~v by setting the dot product of ~v with every element of U equal to 0. This provides a

system of linear equations, whose solution yields the components of ~v, but notice that this

system is underdetermined. Specifically, there will be l free variables, where l is given by

l = NU(1) − nU(1). (53)

Thus, arbitrary values may be assigned to l components of ~v [30]. Importantly, however,

while the assigned values are arbitrary, the choice of which components receive those values is

not. In particular, if the vectors of U are not linearly independent in the subspace determined

28



by the remaining, unassigned components, the resulting system will be overdetermined and

likely inconsistent.

To illustrate this point, consider the simple problem of finding a vector ~w orthogonal to

both of the following:

~u1 = (2, 1, 1) (54)

~u2 = (1, 2, 2) . (55)

The components of ~w are denoted by

~w = (w1, w2, w3) . (56)

In the system of equations determining these elements, there will be one free variable, so

one component of ~w can receive an arbitrary value. Notice, however that if we choose

to assign an arbitrary value (say, 1) to w1, ~u1 and ~u2 are not linearly independent in the

subspace determined by their second and third components. Thus, this choice will result in

the following (clearly inconsistent) system of equations:

w2 + w3 = −2 (57)

w2 + w3 = −1

2
. (58)

Therefore, in solving for the elements of a vector ~v in VU(1), care must be taken in the choice

of components to which arbitrary values will be assigned.

In order to ensure that this choice of components yields a consistent system of linear

equations, we construct a matrix M, whose rows correspond to the vectors of U. Then, the

Gaussian elimination algorithm is applied to this matrix, and any column not containing

a pivot is identified (where a pivot is defined to be the first non-zero element of a row if

that element’s column does not contain the first non-zero element of any prior row). Arbi-

trary values (for convenience chosen to be 1) can then safely be assigned to the corresponding

elements of ~v, since U will be linearly independent in the remaining components, and the re-

maining elements of ~v can be determined by solving the resulting system of linear equations.

In the C++ implementation developed to extend FF Framework, Gauss-Jordan elimination

is used for this purpose in order to improve readability and maximize code reuse, but any

common solution method can be applied. After the components of ~v have been determined,

~v is added to U, and the process is repeated until all NU(1) vectors of VU(1) have been found,

29



thereby completely determining the U(1) gauge generators. The charges of the matter states

under these U(1)’s may then be determined via the inner product of the matter states with

the gauge generators.

B. Initial results [31]

Having developed an algorithm for finding the U(1) charges in a WCFFHS model, we

next examine what new information can be obtained about the WCFFHS landscape. In

order to do this, the algorithm was implemented as a C++ module in FF Framework,

emphasizing speed and extensibility. This implementation was then used in conjunction

with the rest of FF Framework to construct 1,425,976 models and analyze their properties.

In particular, we are interested in analyzing the effect of the U(1) charges on models with

potentially interesting or realistic phenomenology. To this end, the models constructed were

four-dimensional, and each had three basis vectors: the universal 11 vector, a vector known

as the supersymmetric (SUSY) vector of the form
(
1, 1, (1, 0, 0)6 || (0)44

)
, and a vector of the

form
(

(0)20 ||~λ
)

. Models built using only a basis vector of this form in addition to the 11

and SUSY vectors are known as gauge models. The basis vectors were also chosen to be of

order 22 or less. In addition, this run was confined to models which previous analysis had

shown would contain at least a single copy of the Standard Model gauge group. While not

intended to be an exhaustive search of even a subset of the WCFFHS landscape, this run

provides some initial insight into how the U(1) charges affect our overall understanding of a

certain class of potentially phenomenologically interesting models, and some of these results

are presented herein.

1. Gauge content

While all of the produced models are potentially of phenomenological interest (given that

they contain the Standard Model group), models containing groups in proposed GUT models

may be of even greater interest. In particular, we consider the minimal left-right model, the

Georgi-Glashow model, the flipped SU(5) model, the Pati-Salam model, the trinification

model, and the SU(6) model. In all, 67.6% of constructed models contained groups proposed

by one of these GUT models. The proportion of constructed models containing the gauge
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GUT Model(s) Gauge Group Proportion

Minimal Left-Right Model SU(3)× SU(2)× SU(2)× U(1) 0.61

Georgi-Glashow Model/ Flipped SU(5) SU(5) 0.32

Pati-Salam model SU(4)× SU(2)× SU(2) 0.17

Trinification model SU(3)× SU(3)× SU(3) 0.066

SU(6) model SU(6) 0.024

TABLE I. Proportion of all models constructed containing proposed GUT symmetry groups. Note

that Georgi-Glashow and the flipped SU(5) model have been grouped together since every model

constructed contains at least one U(1) and the gauge groups of these two GUT models differ only

by a U(1).

group proposed by each of these models is displayed in Table I. Note that these models will

contain additional groups beyond these GUT groups, and some contain multiple proposed

GUT groups (leading to a total proportion over 0.676).

From this table, we see a significant prevalence of models with phenomenologically in-

teresting gauge content, so we turn now to the U(1) groups specifically. Models in this run

had between 3 and 8 U(1)’s with a median value of 4. Given that prior studies had not

generated U(1) content, one question of particular interest for this run was how much the

U(1) content would affect prior results obtained via this construction method. To this end,

the number of U(1)’s in each model was compared to the number of each other group in the

models to see if there was any correlation between the presence of a particular group and the

presence of U(1)’s. The highest correlation obtained was between the number of U(1)’s and

the number of SU(4)’s as shown in Figure 1, but even this correlation was extremely weak,

with an R2 value of just 0.49. Thus, there seems to be no immediate statistical rule that

can be used to predict how many U(1)’s (and thus, in part, how significant a correction may

be required for a particular model whose properties have been analyzed without considering

U(1) content) will be present based on the presence or absence of other gauge groups.

2. Matter state uniqueness

Next we turn to issues related to the uniqueness of models. In general, determining

whether or not two constructed WCFFHS models are unique is a non-trivial problem [32],
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FIG. 1. Total U(1) groups in constructed models vs. their total number of SU(4) groups, the most

significantly correlated relationship between the number of U(1)’s and the number of any other

group

but it is an important issue to address in relation to the challenge of the string landscape.

In particular, if it can be shown that significant swathes of the landscape correspond to a

single physical model, it is possible that the ∼ 10500 different models of the landscape could

be cut down to a more manageable number.

Construction of U(1) content can be used to revisit prior results on model uniqueness

in a few ways. One possibility is that two models previously thought to be identical could

be shown to be different through a comparison of the exact relationship among the U(1)

generators and other gauge states in the model. In general, however, this comparison will be

extremely difficult, since the U(1) generators are unique only up to rotations in a subspace
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as shown in section IV A, and this problem will therefore be left for future research.

A slightly easier issue to address is that of matter state uniqueness (where uniqueness is

defined in relation to the gauge charges) within a given model [33]. In particular, matter

states that were identical in their non-Abelian charges may differ in their U(1) charges. Al-

though consideration of the U(1) charges still does not allow comparison of matter content

between models, counting the number of unique matter states may occasionally allow a dis-

tinction to be made among models previously thought to be identical simply by recognizing

that the models have unequal numbers of unique matter states.

In light of this, we now consider what insights the present data can provide on the

uniqueness of matter states within a single model. In particular, we consider the quantity

B, defined to be the ratio between the number of matter states in a given model unique in

their non-Abelian charges to the number of matter states unique in their U(1) charges, for

this ratio will give a solid measure of the error that prior studies would have produced in

counting unique matter states within any given model. The distribution of B for the run of

approximately 1.4 million models is displayed in Figure 2. As we can see from this figure, B

was equal to 1 for most models, indicating that the inclusion of U(1) charges had no effect

on the number of unique matter states. In a significant minority of models, however, B fell

below 1, and it reached a minimum of just 0.2083, indicating an error of approximately 80%

in the counting of unique matter states without considering the U(1) content.

Given this distribution, hoping for a correlation between the presence of certain non-

Abelian groups and the value of B is not unreasonable, since this would allow us to predict

(on average) whether a given model would fall into the majority of cases where U(1) gauge

content does not affect matter state uniqueness or into the troubling minority where it

does. Unfortunately, however, analysis of the run under consideration showed no significant

correlation between the number of any non-Abelian gauge group in a model and the value

of B. Indeed, the most significant correlation was between B and SU(10), which had an R2

value of just 0.07.

While B gives us some initial insight into the effect of U(1) charges on matter state

uniqueness, other statistics can also shed some light on what makes these states unique. In

particular, consider the quantity G, defined to be the ratio between matter states unique in

their U(1) charges alone to matter states unique in their non-Abelian charges alone, which

will give further information on how U(1) charges determine matter state uniqueness. The
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B (Matter States Unique in Non−Abelian Charges/
 Matter States Unique in All Charges)
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FIG. 2. Distribution of B, which gives a measure of the error in counting unique matter states as

a result of not considering their U(1) charges

distribution for G is given in Figure 3. While this distribution is sharply peaked below 1

(indicating that a significant number of models contained matter states that were identical in

U(1) charges but unique in non-Abelian content), note that a significant minority of models

had G > 1, indicating that they contained matter states whose uniqueness was determined

solely by their U(1) charges. This adds an interesting complexity to the relationship between

gauge charges and matter state uniqueness, and further research could investigate the origin

of each of these classes of matter states.

Having considered the statistical information relating the U(1) content of WCFFHS mod-

els and matter state uniqueness, we finally consider the larger results for matter state unique-

ness given the benefits of the new algorithm for determining U(1) charges. The overall dis-
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Ratio of Matter States Unique in U(1) Charges to Matter States Unique in Non−Abelian Charges
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FIG. 3. Distribution of G, which shows the degree to which the U(1) charges as opposed to the

non-Abelian charges are responsible for determining matter state uniqueness

tribution for the number of unique matter states is given in Figure 4. This distribution is

fairly symmetric with a distinct peak at 12 unique matter states, the median for these data.

A Shapiro-Wilks normality test shows that these data do not follow a normal distribution,

however.

While the data from this run of WCFFHS models begins to provide some insight into the

effect of U(1) groups on this type of model, the presence of an anomalous U(1) group in a

constructed model can have even more profound effects than those discussed thus far. We

now turn our attention to the mechanisms behind these changes.
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Matter States Unique in All Charges
 (both Non−Abelian and U(1))
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FIG. 4. Distribution of the number of unique matter states, taking into account the new information

provided by the U(1) charges

V. ANOMALOUS U(1) GROUPS

In addition to completing the picture of gauge interactions for a particular model, analysis

of the U(1) charges can have a significant impact on the LEEFT in other ways. In particular,

the presence of an anomalous U(1) group in a model can both affect the unbroken gauge

groups in the LEEFT and change the low-energy spectrum, giving vacuum expectation values

to some fields at high energies and thereby removing them from the low-energy theory. In

order to understand this mechanism, we first consider the larger issue of anomalous groups

in string theory.
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FIG. 5. A Feynman diagram of the type giving rise to gauge anomalies in 4 dimensions. The

straight lines here refer to chiral fermions, which are shown coupling to gauge bosons

A. The Green-Schwarz mechanism

In gauge theories generally, we encounter the possibility that a given gauge symmetry is

broken by quantum corrections beyond tree-level such that it cannot be restored by adding

additional terms to the low-energy effective action [34]. The presence of such an anomaly

is extremely discouraging in any theory that purports to describe a physical system, since

these gauge symmetries are required in order to ensure a consistent quantum theory and

avoid states with negative norms (as mentioned in section I A). Generally, a gauge theory

containing such anomalies must be rejected outright, and indeed, the apparent inability of

string theory to produce a non-anomalous theory with chiral fermions led many researchers

to abandon it entirely in the early 1980’s. In 1984, however, a method known as the Green-

Schwarz mechanism was discovered, which permitted cancellation of the anomalies that had

appeared so problematic. While a complete derivation of the Green-Schwarz mechanism

may be found in any introductory string textbook, the mechanism is touched on here to

provide background for a more interesting specific case of anomaly cancellation.

In four dimensions, we are concerned with the possibility of gauge anomalies arising due to

corrections from diagrams of the type indicated in Figure 5. In ten dimensions, this central

triangle is replaced by a hexagon coupled to gauge bosons at each vertex. We consider a

gauge field A with field strength given by the 2-form [34]

F =
1

2

∑
µν

Fµνdx
µ ∧ dxν = dA + A ∧A. (59)
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In addition, we have the Ricci tensor R. In 10 dimensions, the anomaly appears as a linear

combination of terms composed of the field strength and Ricci tensor. In the Green-Schwarz

mechanism, however, we recognize that an additional term can be added to the action

whose variation precisely cancels the anomaly, a cancellation that is only possible because

of the gauge-invariant combination of the field strength and the Ricci tensor that appears in

the 10-dimensional anomaly for particular overall gauge groups. While this cancellation is

delicate, requiring both the correct dimensionality and the correct gauge groups, it provides

a mechanism to eliminate these anomalous groups from a string model and yield a viable

quantum field theory.

In addition to the anomalies handled by the Green-Schwarz mechanism, however, another

type of anomalous U(1)[35] can appear in WCFFHS models. In order to deal with these,

we must turn to a different (though related) mechanism for handling this type of anomaly

[36].

B. The Dine-Seiberg-Witten mechanism

In order to understand the mechanism for dealing with the anomalous U(1)’s coming out

of the charge lattice construction, we consider a particular term of the overall Lagrangian

for a string model. This term is known as the Fayet-Iliopoulos D-term, which gives the

contribution of an auxiliary field D to the Lagrangian in terms of the dilaton field φ, scalar

fields ci, and the charges of those scalar fields under a U(1) in the model. Such a term will

only appear if the trace of the U(1) charges over the matter states is non-zero, and it is

given by [37]

φ−2D2 = φ−2

(
φ2 +

∑
i

eic
∗
i ci

)2

(60)

which gives us explicit mass terms for the ci. In general, however, since ei can take on either

sign, this would make some of these fields tachyonic. To avoid this unphysical situation, we

instead consider the possibility of providing a vacuum expectation value to some of the ci.

This is most straightforwardly illustrated by considering the case of a single c with negative

charge e under the U(1) in question. In this case, the potential contribution at this order

for φ can be written as

V = φ4 + 2ec∗cφ2 + e2(c∗c)2. (61)
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Setting the derivative with respect to c∗ equal to 0 (in order to solve for the vacuum expec-

tation value of c) and rearranging, we have

e〈c〉2 = −φ2. (62)

Since e is negative, this gives a real vacuum expectation value for c, thereby removing it

from the LEEFT. This shift in the vacuum takes care of the anomaly that would otherwise

be introduced for such a U(1). In general, a more complex pattern of vacuum expectation

values can be given to all of the scalar fields in a theory in order to keep the superpotential

zero (as well as its derivative) while also eliminating the anomaly. Notice also that this

mechanism can only be applied to a single U(1), for, as pointed out in [37], if a second such

U(1) existed, its D-term would take on the form

φ−2D′2 = φ−2

(
1 +

∑
i

e′ic
∗
i ci

)2

, (63)

which would give the scalar fields a tree-level mass. Nevertheless, we have seen that the

presence of a single anomalous U(1) can significantly affect the LEEFT for a constructed

string model, so we finally turn to the issue of dealing with such anomalies in the charge

lattice construction.

C. Anomalous U(1)’s in the charge lattice construction

Although the problem of deriving an efficient algorithm for adjusting the constructed

spectrum in the presence of an anomalous U(1) has been left to future research, we consider

initial steps that will be necessary to do so. In particular, as described in section V B, the

Dine-Seiberg-Witten mechanism may only be applied to a single anomalous U(1) group, so

we must develop tools to identify anomalous U(1)’s and deal with cases where more than

one U(1) appears to be anomalous. Both of these tasks are very straightforward.

Since anomalous U(1)’s will have a non-zero trace over the matter states (which we will

denote by Ti for each U(1)i in the model), we simply take the sum of charges of the matter

states under a particular U(1)i and check to see if that sum is non-zero. If it is, this U(1)i

is anomalous. Given that the U(1) gauge generators are unique only up to rotations in

a subspace, however, there is no guarantee that only a single U(1) will be anomalous. In

fact, if a model contains an anomalous U(1), most of its constructed U(1)s will appear
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anomalous. At this point, however, we once again take advantage of the non-uniqueness of

these gauge generators and rotate them such that only one remains with a non-zero trace.

The left-moving part of the one “true” anomalous gauge generator ~v′X is given by

~v′X =
∑
i

Ti~vi (64)

where the vi are the left-moving components of the old set of gauge generators. The re-

maining generators can then be obtained by adding ~v′X to the set VSR in the notation of

section IV A and then proceeding with the U(1) gauge generator construction method as

usual.

Using these techniques, we obtain a single anomalous U(1) group, to which the Dine-

Seiberg-Witten mechanism may be applied, thereby eliminating the anomaly altogether and

producing a shift in the allowed vacuum states. As we can see from the run of 1.4 million

WCFFHS models described in section IV B, this is quite important, for in this run, only 57

models contained no anomalous U(1) groups, and of these, only 5 contained a GUT group.

This should not dismay us at all, however, for the presence of an anomalous U(1) can be

phenomenologically favorable, particularly if it results in a vacuum expectation value for

exotic states in the model.

VI. CONCLUSIONS

The potential for analyzing the string landscape using WCFFHS construction techniques

is significant. Using these techniques, we can examine the properties of potential string

models in considerable detail and systematically search for models of phenomenological in-

terest. In order to get a complete sense of the gauge interactions for a model and understand

the models low-energy spectrum, however, we must continue to develop efficient tools for

constructing and analyzing all gauge content, including the U(1) gauge content, for these

models. To this end, the tools described herein will hopefully prove useful in future system-

atic searches of the landscape. Further research could improve these tools in a number of

ways, however.

In particular, an efficient and rigorous method of determining equivalence of models is

essential in order to determine whether or not the search space on the landscape can be

reduced at all. Furthermore, while this equivalence will be fairly difficult to establish, it is
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possible that establishing matter state uniqueness between models could be made easier by

developing an effective method for comparing sets of gauge generators among constructed

models. Finally, while a technique for rotating the U(1) gauge generators to leave only a

single anomalous U(1) was presented in section V C, future developments could attempt to

build the U(1) gauge generators this way without requiring a subsequent recalculation of

those generators. This would increase efficiency, leaving more computing time for analysis of

the resultant shifted vacuum. While much work remains to complete the picture of WCFFHS

models constructed using the methods described, the tools already available offer hope that

WCFFHS construction may continue to further our understanding of the string landscape

and perhaps point to the elusive string model that matches our own experiences.
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